

Nutritional Deficiency – Impact on Toddler **Development Julie Lanigan Paediatric Research Dietitian Childhood Nutrition Research Centre UCL** Institute of Child Health

Aims of Discussion

- What do we know about toddler nutrition?
- Which Nutrients are at risk?
- What is the impact of nutritional deficiency on toddler development ?
- What can be done?

UK Dietary Surveys

NDNS

A survey carried out on behalf of the Department of Health and the Food Standards Agency

National Diet and Nutrition Survey

Headline results from Years 1 and 2 (combined) of the Rolling Programme (2008/2009 - 2009/10)

DNSIYC

DH Department A survey carried out on behalf of the Department of Health and Food Standards Agency

of Health

Diet and Nutrition Survey of Infants and Young Children, 2011

Edited by: Alison Lennox, Jill Sommerville, Ken Ong, Helen Henderson and Rachel Allen.

Diet and Nutrition Survey of Infants and Young Children, 2011

UK Dietary Surveys

- National Diet and Nutrition Survey
- Age surveyed has changed
 - 1¹/₂ 4 ¹/₂ (1995)
 - 1¹/₂ 3 (2011)

UK Dietary Surveys

Diet and Nutrition Survey of Infants and Young Children 4-18 months (2011)

NDNS Rolling Survey

- Intakes of most vitamins met the RNI
 - -Except Vit D RNI 7 µg/day
- Mean intake 1.9 µg/day

-27% of RNI

-32% including supplements

DNSIYC Survey

 Intakes of most vitamins met the RNI

-Except vitamin D

- Mean intake 4 µg/day
 –57% of RNI
- Higher intakes in younger
- All breastfed below RNI

About Vitamin D

- Essential nutrient
- Needed for healthy bones
- Control blood calcium
- Associations with a range of diseases reported from observational studies
 - Cardiovascular disease
 - Cancers

About Vitamin D

- Only vitamin that cannot be met by diet alone
- Sunlight is the major source
- Supplements may be needed
- Two dietary forms
 - -D₂ Ergocholecalciferol
 - $-D_3$ Cholecalciferol

Vitamin D Deficiency

Resurgence

- Excessive sun protection
- Lack of supplementation
- Belief certain foods are high in vitamin D e.g. milk
- Higher vitamin D requirements
- Ethnic groups
 - 20-40% prevalence in UK Asian toddlers

At Risk Groups

- Pregnant and breastfeeding
 Teenagers and young women
- Children under 5 years
 - 6 months to 3 years
- Adolescents
- Elderly

At Risk Groups

- Strict vegetarians and vegans
- Prolonged breastfeeding
 –Poor weaning
- Exclusion diets
- Malabsorption
- Disease states (liver, renal)
- Some drugs

At Risk Groups

- People with low sun exposure
 - -Covering up for cultural reasons
 - -Housebound

People with darker skin
 Cannot convert to active form so well

Vit D Status

- Assessment
- Insufficient
 - Plasma 25-OHD \leq 50 nmol/l
 - Sub-optimal e.g. for bone health
- Deficient
 - Plasma 25 OHD ≤ 25 nmol/l
 Associated with disease

Vit D status – UK toddlers

- DNSIYC 2011
 - Mean 25-OH-D
 - 5-11 months of age = 68.6 nmol/l
 - 12+ months of age = 64.3 nmol/l

• Only a small percentage of this sample were deficient

Deficiency and Risks

- Bone disease
 - Ricketts
 - Oesteomalacia
- Possible role in
 - Cancer
 - Heart disease
 - Diabetes
 - Multiple sclerosis
 - Arthritis

Deficiency - Symptoms

- Infants
 - Seizures
 - Cardiomyopathy
- Children
 - Poor growth
 - Rickets

Food Sources

- Oily fish (trout, salmon, mackerel, herring, sardine, tuna) 5-10 µg/100g
- Egg yolk
- Red meat
- Breast milk
- Fortified Foods
- Breakfast cereals
- Margarine
- Infant Formula

5 µg/100g 1µg/100g 0.07µg/100ml

- 3-8 µg/100g 7.5 µg/100g
- ~1.2 µg/100ml

Toddler Sources

 DNSIYC in µg/day -Infant formula 1.0 -Milk & Products 0.6 -Fat spreads 0.40.5 -Meat -Commercial foods 0.3-Fish ~0.05

Deficiency Returns

- West Midlands in 2001 24 children under 5
 present with symptomatic vitamin D deficiency
- Manchester child health clinic reports a rickets prevalence of 1.6%
- Glasgow -160 cases including 3 white children
- Southampton 8% of mostly white children attending a paediatric orthopaedic clinic had biochemical deficiency
- Camden reports 5 cases of rickets last year

Vitamin D Sources

- Adequate exposure to sunlight
 - -20 30 minutes 2-3 times per week in summer
 - Dark skinned need greater exposure (2-10 times longer)
- Sunscreens
 - Avoid overuse but..
 - Avoid redness/burning

Bridging the Gap

Table 1 UK Dietary Reference Values (D Age	RV) for vitamin D Recommended amount of vitamin D µg/day
Infants 1-7 months Infants 7 months-3 years 4 years -64 years	8.5µg 7µg No recommendation
Pregnant women or breastfeeding women Men or women over the age of 65 years	10μg e 10μg

Preventing Deficiency

Category	Dose IU	Dose ug	Examples of supplements
Newborn up to 1 month	300 – 400 units daily	7.5 – 10 daily	Abidec, Dalivit, Baby D drops and Healthy Start
1 month – 18 years	400 – 1,000 units dail	10 – 25 daily	Abidec, Dalivit, Boots high strength vitamin D drops, Holland and Barrett Sunvite D3, Dlux oral spray, SunVitD3 and Vitabiotics tablets

Adapted from RCPCH Guide for Vitamin D in childhood

Treating Deficiency

•Should only be done under medical supervision

Category	Dose IU	Dose ug	Duration
Up to 6 months	1,000 to 3,000 units daily	25 – 75 daily	4 – 8 weeks
6 months – 12 years	6,000 units daily	150 daily	4 – 8 weeks
12 – 18 years	10,000 units daily	250 daily	4 – 8 weeks

Adapted from RCPCH Guide for Vitamin D in childhood http://www.rcpch.ac.uk/child-health/standards-care/nutrition-andgrowth/guide-vitamin-d-childhood/guide-vitamin-d-childhood

Vitamin Supplements

	Α	D	С
	IU	ug	mg
Healthy Start	700	7.5	20
Abidec	1333	10	40
Dalivit	5000	10	50
Haliborange	200	3.25	25
Well Kid	400	5	40
Ddrops		10	

Healthy Start Vitamins

- Recommended for:
- All children up to age 5

- Pregnant & Breastfeeding mothers
- Infants
 - Breastfed where mothers may have low vitamin status
 - Formula fed receiving <500 mls
 formula daily

http://www.healthystart.nhs.uk/for-health-professionals/vitamins/

Uptake

- Survey of 13 PCTs in England
- < 10% of eligible families take up scheme

Jessiman et al, 2013

- Reasons
 - Poor accessibility
 - Low promotion by HCPs
 - Poor awareness
 - Motivation/beliefs

What can HCPs do

- Raise awareness
- Help set up an interest group
- Work with EYPs e.g. In Sure Start Centres
- Promote supplements, diet and outdoor play
- Refer families to already established groups
- Apply for funding e.g. Feeding For Life Best Practice Grant Scheme – Now Open
- <u>http://www.feedingforlifefoundation.co.uk/ho</u> <u>me.aspx</u>

Provide Resources

Order from Nutrition and Diet Resources UK (NDR-UK). For more information visit <u>www.ndr-uk.org</u> or call 0141 202 0690.

Provide Resources

- A practical approach to vitamin D supplementation in pregnant and breastfeeing women, infants and toddlers.
- Available at :
- <u>http://www.feedingforlifefoundation.co.uk</u>
- Preventing vitamin D deficiency in toddlers
- Available at:
- <u>https://www.infantandtoddlerforum.org</u>

Headline News

"Low Vitamin D Levels Raise Anaemia Risk in children"

- Complex interplay between low levels of vitamin D and haemoglobin
- Regulation of immune inflammation
 - A catalyst for anaemia
- Not causal associated with other factors

Atkinson et al., 2013

Iron and Development

- Brain development
 - Most rapid growth
- Iron needed for
 - Myelin formation
 - Biochemical syntheses
 - Neuronal growth/metabolism

Iron Requirements

 Highly conserved nutrient No mechanism for excretion Risk of overload Very reactive Useful to microbes Supplement with caution

Iron Requirements

 Healthy term infants use stores in first 6 months Dietary requirement is low •UK RNI •0-3 months 1.7 mg/day •4-6 months 4.3 mg/day •7-12 months 7.8 Toddlers 1-3 years 6.9 mg/day

Iron Intake

- RNI 6.9 mg/day
- NDNS 2011 age 1.5-4 years
 - Median intake 6.1 mg/day
 88% of RNI
- DNSIYC 2011 age 12-18 mths
 - Mean intake 6.4 mg/day
 82% of RNI (7.8 mg/day)

Iron Deficiency

- Insufficient to maintain normal functions
 - -Absorption is inadequate for needs
 - -Long-term negative balance
 - -Decrease in stores
- May be accompanied by symptoms (anaemia)

Iron Deficiency

- Main cause is poor intake

 Dietary
 - Foods low in iron
 - Impaired absorption
 - -Transport
 - -Losses
 - -Disease states

At Risk - Iron

- Iron Deficiency (ID)
 - High prevalence globally
 - Affects up to 50% children
 - Can lead to iron deficiency anaemia (IDA)
 - Deficiency with disease symptoms
 - CMO ~26% UK children affected

Micronutrient Malnutrition Unit Nutrition for Health and Development

Risk Factors

- Low birthweight
- Early cord clamping
- Males
- Social Factors
- Low meat intake
- High intake of cow's milk

Assessing Iron Status

- Serum Iron:
 - Amount in blood level may be normal even if the total amount of iron in the body is low
- Serum Ferritin:
 - Amount in stores
- Transferrin
 - Amount carried in blood

Identifying Deficiency

- Haemoglobin anaemia
 - Less than 11.0 g/dL for both male and female children aged ≥ 10 months (WHO, 2001)
- Ferritin stores
 - Serum Ferritin less than 12 µg/l for both male and female children aged ≥ 10 months (SACN 2010, WHO, 2001)

At Risk - Iron

- Iron deficiency in pregnancy linked to -IntraUterine Growth Retardation -Preterm birth
 - -Low birtweight

At Risk - Iron

- Toddlers are at high risk due to rapid growth and high needs
- Prevalence
 - -12-30%
 - Depending on
 - Population
 - screening method

Iron Status

- Anaemia in UK Preshoolers
- NDNS1995
 - 13%
- ALSPAC
 - 17%
- DNSIYC 2011
 - 2%

At Risk - Iron

- Ethnicity high prevalence of anaemia in UK Asian families
 - Bradford 1986 25% of children aged 6-48 months admitted to hospital
 - Sheffield 1991 17%
 - England-wide 20-30%

(Ehrhardt, 1986; Duggan, 1991; Lawson, 1998)

Possible Factors

- Restricted Diets
 - Vegetarian/Vegan
 - Cultural Exclusions
- Dietary Inhibitors of Iron
 - Phytates Tannins
 - Cows milk
- Lack of Dietary Facilitators

Impact of Deficiency

IDA associated with:

 Lower development scores in toddlers

Lozoff, Pediatrics, 1987

-Reduced mental performance and behavioural problems

Lozoff, Nutrition Reviews, 2006 McCann, AJCN, 2007

Impact of Deficiency

- ALSPAC
- Longitudinal Study of Parents and Children
- Low Haemoglobin in infancy associated with poorer development in toddlers

Sherriff, 2001

Limitations of Studies

- Mainly Observational – Short Term Studies
- Lack
- -Randomised design
 Confounded by other factors
 -Robust measures
 -Long Term Follow Up
 Unable to show causality

Aims of Discussion

- What do we know about toddler nutrition?
- Which Nutrients are at risk?
- What is the impact of nutritional deficiency on toddler development ?
- What can be done?

Interventions

- Randomised Controlled Trials (RCT)
- Iron Supplementation:

-No immediate benefits on psychomotor development

-Evidence lacking for long-term effects

Systematic Reviews

- Meta-analyses
 Conflicting
- Sachdev 2005
 - Small benefit for Mental Development Index with extra iron – 14 trials
- Szajewska 2010
 - Improvements in Psychomotor
 Developement Index 3 studies
- Wang 2013

- No improvement for MDI or PDI

Systematic Reviews

- Effect of Iron Interventions on growth
 - 21 RCTs found no effect overall
 Small effect in children ≥ 6 years of high dose supplement (>40mg/d)
- Developing countries
 - 26 RCTS benefits in deficient/anaemic only
 - Dose and duration important
 - Targeted approach may be useful

(Vesna Vucic et al., 2013, lannotti et al., 2006)

Interventions – At Risk

- RCT of iron supplements in low birthweight infants
- Supplementation at 1-6 months compared with placebo
- Supplementation reduced behavioural problems at 3 years of age
- Main outcome:
 - Behaviour assessed using a checklist
 - Subjective measure

Toddler Iron Sources

DNSIYC in mg/day -Infant formula 1.1 -Cereals 2.6 -Infant cereals < 0.1 < 0.1 -Eggs

Food Sources- Iron

mg/100g

- Red meat (Beef highest) 1-3
- Fish (Oily highest) 0.5-5
- Eggs (Yolk highest)
- Dried Fruits
- Nuts
- Pulses
- Soya
- Root vegetables
- Green Leafy Veg

- 2 2-6 2-6 2-3 2-4 0.5-1
 - 1.5-2

Food Sources - Iron

mg/100g

- Fortified Foods
- Breakfast cereals 2-20
- Bread 1-3.5
 - Wholegrains highest
- Breast milk 0.07
- Infant Formula
 1.4
- Curry Powders 30-60

Food Sources- Iron

•Haem iron

- -Found in foods of animal origin (Meat)
- -Most bioavailable
- Non-haem iron
- •found in Plant foods and fortified cereals
 - •If eaten with Vitamin C absorption improved
 - •May be destroyed during cooking
- Inhibitors of Iron
- •Tannins (tea), Phosphates, Phytate, Bran, Lignin, Cows' milk

Summary - Iron

- IDA is a risk in toddlers
- Associated with cognitive and behavioural deficits
- Supplements may help at risk children
- Early screening may be helpful
- <u>But</u>
- Only a small number of trials
- Lacking:
 - -Objective measures
 - -Long term follow up
 - -RCTs of iron interventions needed

Conclusions

- Toddlers are at risk of deficiencies in vitamin D and iron
- The risk is greater for certain groups of people especially those with darker skin
- Supplementation can bridge the gap for vitamin D
- There is insufficient evidence to recommend universal supplementation with iron
- HCPs have an important role to play in providing appropriate advice